

Next Generation Space Telescope (NGST)

Presented by

Bernard D. Seery Project Manager

NGST and Origins

- The Origins and Evolution of Galaxies
 - Seeing the "Dark Ages"
- The Structure and Chemistry of the Universe
- The Physics of Star and Planet Formation
 - Making a home for life

NGST at a Glance

- 8m primary mirror
- 0.6-10+ µm wavelength range
- 5 year mission life (10-year goal)
- Passively cooled to < 50K
- L2 orbit

Key element of the Origins Program

Architecture Studies

- Just completed 2 Pre-Phase A industry studies (TRW and Ball) and 1 IR&D study (Lockheed Martin)
 - 4 viable 8-meter observatory concepts capable of launch on an ELV

A NASA Origins Mission

CEST

Outline

- Science
- Integrated Science Instrument Module
- Technology
- Observatory Verification
- Operations
- Outreach
- Programmatics

The Origins and Evolution of Galaxies – *Seeing the "Dark Ages"*

- When and how do the first stars and galaxies form?
 - HST and Keck have detected very luminous star forming regions/galaxies that appeared 1 billion years after the Big Bang (to Z ~ 5.6)
 - New stars appear to be forming at roughly a constant rate until very recently (1 < z < 5)
 - SCUBA may have detected a significant component of dust-hidden star formation at cosmological distances
- To see the growth of galaxies such as our Milky Way, we need NGST (0.6-10µm)
 - Sensitivity to see the first epoch of star formation (z ~ 10-20, 0.1 nJy sensitivity in 1 week)
 - Angular resolution and wide field to survey 100,000 protogalaxies and their environments (to $z \sim 5$)
 - MIR imaging and spectroscopy to pinpoint the nature of the hidden stars and Active Galactic Nucleii

The Structure and Chemistry of the Universe

- How did the Universe form? What is it made of?
 - Supernovae support an accelerating universe (~ 0.8)
 - Cluster X-rays & strong lensing supports a low density universe
 (~0.2)
 - CMB missions (MAP, Plank) will measure small scale temperature variations 300,000 years after the Big Bang (z \sim 1100) to constrain cosmological parameters ($_{\rm m}$, , H₀, S-Z effect)
- NGST provides direct astronomical evidence of the growth of structure and cosmological dimming (at Z ~ 1-5)
 - HST-like resolution, wide-field of view enable statistical masses of galaxies, clusters and larger structrues on scales from galaxies to galaxy superclusters (from 0.1-10 Mpc, weak lensing)
 - Type Ia and Type II supernovae (to Z>5) provide independent complementary constraints on the expansion and chemical evolution of the Universe
 - Connects directly with study of early galaxies: distances, masses, luminosities, etc.

NGST - 6

The Physics of Star and Planet Formation – *Making a Home for Life*

- Are planetary systems like our Solar System common? How do they form? Is the chemistry of the Interstellar Medium important in the creation of life?
- To address these complex questions, observations on all scales and many wavelengths must be knit together with theory
- NGST will play an important role with its near- and mid-infrared capabilities by:
 - Determining the physics of star formation: the assembly of stars and proto-planetary disks from cloud cores
 - Imaging and doing atmospheric studies of Jupiter-sized planets at similar (5 AU) distances around nearby stars (50 candidates within 8 pc, needs a simple MIR Lyot stop)
 - Inventorying the pre-biotic materials in star-forming systems

Science Instruments

Integrated Science Instrument Module (ISIM) – cold instrument module and data system

- Objective
 - Procure instruments from US/international science community
 - GSFC to integrate PI's flight qualified science instruments, optics, thermal control, electronics into ISIM, deliver to prime as GFE

• Status

- Concept studies underway in U.S., Canada, Europe
- International partners agree on instrument selection process
- NASA HQ schedule concerns addressed, AO release delayed by one year

Technology Challenges

NGST

- Top 5 Technologies
 - Optics
 - Wavefront Correction
 - Actuators

- Detectors
- Precision DeployableStructures

Ultra-Lightweight Active Optics

NGST Mirror System Demonstrator

- Objective
 - <15 kg/m² areal density
- **Progress**
 - UofAA mirror areal density now at 12.4 kg/m²
 - Solved the COI facesheet fracture problem
 - Selected Phase 1 NASA/AFRL/NRO Advanced Mirror System Demonstrator (AMSD) Contractors
- **Problems**
 - Bubbles in UofA faceplate
 - COI tool mishap

Cryogenic Deformable Mirror

- Wavefront correction device used to compensate for midto-high spatial frequency wavefront errors in the telescope
- Objective integrated NGST, SBIR, Cross-Enterprise technology program plan to develop a flight capable cryogenic DM and lightweight low-power drive electronics.
- Status
 - Executing Phase 3 SBIR with Xinetics –
 cryogenic measurements on doped SrTiO₃
 show promising strain levels down to < 10K

American Superconductor DM as a possible second source

Cryogenic Actuators

- Objective
 - Develop position actuators for mirror alignment and phasing, and force actuators for figure control (35K operation)
 - Status
 - 7 firms building prototype actuators
 - JPL received initial deliveries, performing cryogenic tests

JPL Characterization Test Set

A NASA Origins Mission

A NASA

Origins

Mission

Detector Technology

NGST

• Objective – develop Near IR (0.6 - 5 μ m, 4k x 4k) and Mid IR (5 - 10+ μ m, 1k x 1k) focal planes

- Yardstick concept utilizes five 16.8 Mpixel FPAs

Status

- 6 competitively selected technology contracts underway
- Large format cryo readouts and packaging
- Short HgCdTe shows good visible performance(> 50% uncoated)
- Si:As IBCs show 10% reduction in noise relative to SIRTF

Courtesy of Ball Aerospace

Courtesy of J. Hester, P. Scowen (ASU) & J. Morse (U.CO)

NGST - 13

Precision Deployable Structures

- Deployable Optics Testbed Assembly (DOTA)
 - Objective test precision deployment and latching
 - Status two segment (one moveable) mirror reaction structure actuated and tested

Courtesy of TRW Inc.

Developmental Comparative Active Telescope Testbed (DCATT)

- Objective
 - Investigate optimal strategies for segmented mirror wavefront sensing and control
- Status
 - Completed DCATT stimulus and image-based wavefront sensing and control hardware and software
 - Demonstrated optical control and DCATT "first light" using telescope simulator module
 - Telescope module nearing completion

A NASA

Origins Mission

Inflatable Sunshield in Space (ISIS)

1/10th scale

ISIS is the shuttle deployment of a 1/2 scale NGST sunshield

- Objective
 - Demonstrate feasibility of inflatable technology for passive cooling, correlate data with predictions
- Status
 - 1/2 scale engineering prototype (4 membrane) shield deployed via inflation on the ground (6/98)

Procuring flight payload and extendible mast

U)

Nexus – Wavefront Sensing and Control Flight Demonstration

Nexus is a 2.6 m segmented infrared telescope – shuttle launched free flyer – that uses AMSD optics and SIRTF-type detectors

- **Objectives**
 - Demonstrate image-based wavefront sensing and control using a science-grade camera and real stellar sources
 - Quantify performance margins for slew and settle times, zero g release, control-structures interaction, micro/nano dynamics
 - Validate new cost curve for lightweight optics and detectors

Status

- Phase A Study in progress
 - PDR in October 1999
 - CDR in December 2000
 - Launch in mid 2003
- Partnering discussions on-going with DoD and NMP

Observatory Verification

System level verification is key to autonomous observatory

- Testing required:
 - Optical image quality (diffraction limited at 2 μm)
 - Dynamic and thermal stability over >24 hours
 - Zodiacal-background limited up to 10 μm
 - Science instruments performance
 - Ground system validation

GST

Operations

- Objective
 - Optimize performance for life cycle cost with continuing emphasis on operability
- Status
 - Designated STScI as Science and Operations Center
 - STScI instrument ops study/white paper planned
 - Formal Phase A operations concept study started
 - Initial operating configuration of an expert system for planning observation programs online Scientist's Expert Assistant
 - Operations working group has generated a list of requirements for an adaptive scheduler

CGST

A NASA

Mission

Outreach

- Objective
 - Keep astronomy community informed and involved
 - Develop concensus on science goals and instrument complement
- Activities
 - AAS special sessions (Jan'99, Jun'99...)
 - Decade survey input, website expansion, NGST section of STScI newsletter
 - ASWG now includes CSA, ESA and Japanese representatives
 - Detector workshop at STScI (Apr'99)
 - Woods Hole science-technology meeting (Sep'99)

NGST Top Level Observatory Schedule

Next Generation Space Telescope

International Collaboration

- Motivation for Partnering
 - Increased observatory scientific capability/productivity
 - Increased project contingency
- Resource Portfolio in FY96 US Dollars

NASA	_	\$900M	(80%)
ESA	_	\$200M	(15%)
CSA	_	\$50M	(5%)

- Plans
 - Extend the NASA/ESA MOU for HST while incorporating NGST to maintain the 15% allotment of observing time for ESA astronomers
 - Establish a similar partnering arrangement with CSA for a proportional amount (5%) of NGST observing time
- Documentation
 - Concept Agreement signed by Bonnet/Weiler in December 1998 and Wetter/Weiler in April 1999
 - Letters of Agreement being drafted for both CSA and ESA May 1999
 - Memorandum of Understanding (MOU) for both under construction

GST

Acquisition Strategy

To determine best acquisition approach, NASA analyzed Agency and DoD programs and conducted trades

- **Teaming** (roles and responsibilities) examined a range of options
- **Timing** (*sequence and timing of key events*) identified independent schedule variables and the interdependence of key events
- Contracting (contract types and regulatory considerations)

 matched risk and responsibility, balanced innovation
 and precedence

Accomplishments included

- Customized mission acquisition strategy
- Successful ASM for phased procurement on March 24
- Received 4 letters of intent to bid and issued RFP April 23

NGST Risk Management Approach

Strong, Integrated Systems Engineering

Innovative Mission Architecture

New Technologies

A NASA Origins Mission

GST

Accomplishments FY'98

Scientifically...

- ASWG membership expanded to broaden community participation and support base
- International (ESA/CSA) participation in full swing
 - Joint, integrated schedule
 - Instrument and spacecraft studies
 - Science groups
 - Excellent coordination and collaboration

Technologically...

- Significant progress against our technology development roadmap in the mirror, deployable structures, detector, actuator, and expert assistant prototype areas
- Optics community has responded to mirror areal density and cycle time challenges goal of <15 kg/m² within reach
- Embarked on new thrusts in the area of cryogenic effects on materials and structures

Programmatically...

- SRB-recommended systems engineering approach to acquisition strategy really cool
- NASA/ESA/CSA partnering committee has motivated early emphasis on processschedules-instrument module interface definition
- NGST External Science Review (NESR) has encouraged us to redouble scientific outreach activities

A NASA Origins Mission

Report Card for Last Year – Accomplishment Metrics

Last Year's Predictions	Status to Date	Comments	
• Technology Development			
Milestones			
- 2m Active Optics Segment Prototype (NMSD)	-Schedule slip to Aug-Oct 1999	- REOSC polishing tool mishap and U of A faceplate bubble problem	
- DCATT "First Light"	-First light achieved using source simulator module	 Delay in completion of telescope primary due to Oak Ridge failing to meet surface roughness spec 	
- Cryogenic Actuator Lash-up	-Several cryogenic actuator prototypes demonstrated	- Some have met spec at <u>both</u> ambient and cryogenic temperatures	
 Technology Readiness Monograph 	-Deferred to post-Woods Hole	- ASP to publish the Woods Hole workshop proceedings	
- Joint NASA/DoD AMSD RFO	-Complete	- Selections complete; historic partnership in place	
• Architecture Studies			
- Completion of Pre-A Studies	-Complete	- Documented on the Web	
- Competitive Selection of Formulation Partners	-Complete by May 20	 Proposals due May 5; 2-3 month schedule delay due to phased procurement process pathfinding 	
- Documented Yardstick Analysis	-6 of 12 monographs complete	- In final review cycle	
- Cost Break Points as a Function of	-Complete	- Results documented on Web and used to generate Phase A/B requirements	
- First Correlation of Predicted Optical Control Algorithm with DCATT Testbed Results	-Exercised algorithms for DM correction of segmented optics	- Completion of this task scheduled for Oct 1999	

Goals for the Next Year

• Architecture Studies

- Selection of industry formulation phase partners
- Allocation process leading to spacecraft and scientific instrument international contributions
- NGST monograph series
- Draft observatory verification plan

Science and Operations

- STSci operations study
- Cooperative agreement with STScI for science and operations
- NRA#2 awards for science instrument technology development

Technology Development

- 2-meter class mirror prototypes
- Woods Hole technology readiness monograph
- DCATT Phase I experiment milestones
- Detector multi-chip module prototype development

GST

Three Points to Remember about NGST

- After 2 years of technology development, we have uncovered numerous problems, but none have proved insurmountable
 - While the ultra-lightweight cryogenic active mirrors look tough but doable, the testing of these low F/# aspheric optics will be one of our biggest challenges in the coming year
- The international scientific community is engaged, working on over a dozen competitively selected instrument concept and technology studies, and several new ideas are being pursued (e.g., IR MOS and IFTS)
 - The core science program remains robust
 - Budget shortfalls in FY 02-03 significantly impact the NGST technology program and observatory flight program schedule

0 p. U. U) 0 0 0 C) rd. D. U) H 0 40 ø 0 0 C) 34 m

http://www.ngst.nasa.gov

A NASA Origins Mission